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ABSTRACT 

It is qhown that  the  freeze  distribution  is a mixture of the distribution of freeze-date  and  the  simple  dichoto- 
mous  distribution of freeze  and  freezeless  years.  This is applied  both  nonparametrically  and  assuming a normal 
distribution of freeze  date  to  three  stations at three  different  thresholds to obtain  the  probabilities of freeze 
before or after any date.  The  distribution of the  freeze-free  period  is  developed  and  application  made  to  one of 
the  stations  to  obtain  probabilities of the  freeze-free  period  being  less  than a given  time  interval. The expressions 
for the mean  freeze-date  and  freeze-free  period  are  also  developed  and  estimates  made  for  the  stations  treated. 

1. INTRODUCTION 

The  estimation of freeze  probabilities  from complete 
freeze-date series has been treated by Thom  and  Shaw 
[l]. When  the  freeze-date  series  for  an  observation  sta- 
tion is incomplete in  the sense that some years experienced 
no freeze, there is, of course, a probsability of freezeless 
years. This is common in more  southerly  latitudes, espe- 
cially for freeze  thresholds belo'w 32" F. With  the  addi- 
tion of the no-freeze probability component, a quite  dif- 
ferent  problem in  the  estimation of freeze  probability 
arises. This  has been discussed by  Spillman  et  al. [e]. 
They  gave  rules for  finding  the mean  recurrence  interval 
for the incomplete series ; but  since  they  did not, recognize 
the more  general  statistical  aspects of the  problem,  their 
rules are  not  completely  convertib'le  to  probability  state- 
ments. 

2. THE FREEZE DISTRIBUTION  FUNCTION 

The model for  determining  freeze  probability  may be 
thought of as a mixture of two distributions: one a dis- 
crete distribution of no-freeze' and freeze, the  other  an 
essentially continuous  distribution of freeze-date for  years 
when freeze occurred. I n  this discussion, the  period over 
which spring  freeze-date is assumed to  range is January 
1 to  June 30, and  that  for  fall freeze  is  from  July 1 to 
December 31. These  are  arbitrary,  and  other  dates may 
be assumed if it suits a particular  purpose  better, as we 
shall see later. The model is seen to be equivalent  to con- 
centrating  a  probability of no-freeze at  an arbsitrary point 
before the  beginning of the season for  spring freeze and 
after  the season for  fall freeze. 

We define the  spring freeze-date series as  in [l] to be 
the series of annual  last  dates  in  spring  on  which  a  min- 
imum temperature less than the threshold  temperature 

*This paper is based on work done while the writer  was Visiting. Pro- 
fessor of Statistics, Biometrics Unit, Cornel1 University [31. 

(32", 28", W",  20", 16")  has  occurred.  The  fall freeze- 
date series is defined by  substituting  the  words faZl for 
spring  and first date for  last  date. 

On the basis of the  results  given  in [ 11 , we shall assume 
t,llat the  climatological  series  comprising freeze-dates 
mixed with no-f reeze occurrences are  random variables. 
It follows then  that  the  distribution  functions of freeze 
may be found,  and  that  these  will completely define the 
freeze series populations. 

The  distribution  function  is defined as  usual  by 

F(4 =J" .f(u> du (1) 
-m 

where f (u) is the  probability  density  function  (pdf) or 
frequency  distribution  and F ( - co ) = 0 and F ( 00 ) = 1. 
HereF ( x )  is  the  probability  that u is less than x ; and 
when t~ is continuous  this is identical  with  the  probability 
of a value less than or equal  to x. Clearly  in  the  spring 
we shall be most  interested  in  the  probab'ility of a freeze 
occurring  after x, and hence, we shall be interested  in  the 
form 1 - F (  x) which  gives that  probability. In   fa l l  we 
shall be interested  in  the  probability of a  freeze b'efore x 
which  is  given by F (x)  itself. 

The mixed distribution of freeze-date  and  no-freeze  for 
spring may now  be derived  as  follows : Let q8 be the  prob- 
ability of no-freeze occurring  in  spring  according to  the 
model  assumed above. 1 - q.=p, is  then  the  probability 
of a  freeze  after  fthe  beginning of the  freeze season. Ac- 
cording  to  the  definition of mixed distributions [4], the 
distribution  function  for  spring  freeze  will be 

G ( x )  = q s + p s  Fs(x) (2) 

where F s  (x) is  the  distribution  function of spring-freeze 
date when  freeze occurred. We employ large S and A to 
indicate  the  continuous  portion of x, and  small a and b 
to  indicate  the  discrete  portion. It is seen that G(x) is 
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a distribution  function,  for if x takes a small  value b by 
definition P (  b )  -0, meaning that  no  freeze-date will 
occur bsefore b where G (  b )  =q8.  This  is  the  probability 
t h d  no-freeze  will occur. If z is not a member of either 
s or X, then G ( x )  = 0, for it is impossible that e,it,her one 
of the events  freeze or no-freeze  should  occur. On the 
other hand, if a is a large value, e, then by definition 
F ( c )  -1, and G (x) = q s + p s =  1 which is  the  prob'ability 
that  either no-freeze or a freeze-date  have  occurred  before 
e. Thus (2) is a distribetion  function. It will be clear 
now that  the prob'ability of a freeze  a.fter date 3: will 
depend not  only  on 1 -P( z )  , the probability of freeze- 
date  when  freeze has occurred, but also  on the probab'ility 
that a freeze  will occur at all on any  date.  This, of 
course, is 1-qs or ps .  

As we have wen, G ( x )  of equation (2)  gives ithe prob- 
ability of freeze or no#-freeze  before x, whereas  our  main 
interest is in  the  probability of freezes after E. This  is 
clearly one minus the  probability  obtained  from ( 2 ) .  T,et 

T~(z) = I - G(z), 
then 

H ( z )  = 1 -qs-p,yFs(x) ; 

and since p,+qs= 1, 

H ( z )  -&(z)I. (3) 

I ( z )  = 1 -&(x) (4) 
If we write 

equation (3) becomes 

II(Z) = p,I(z) .  ( 5 )  

This gives the prob8abilit,y of a freeze  occurring  after 
date x in  spring. 

For fall freeze we have a similar mixed distribution 
except that  the  probability of no-freeze is now con(-en- 
trated after  the  fall freeze season and  again tloes not 
enter into  the  probability  before z. Hence the  (late 
distribution is 

J (3 : )  = pulik (x) (6) 

Here p ,  is the  probability of  a. fall freeze ancl Zf'>i(z) is 
the distribut,ion  function  on  date.  Since tEle distribution 
function gives the  prob'ability of freeze  before date x, 
equation (6)  gives  the  required  probability  directly. If 
the prob'abilit,y after x is needed, this may be obtained 
from 1 - J ( x ) .  This  then  includes q., the prob'abilit,y of 
no-freeze in  fall  (autumn). 

It should b'e noted that equations (5) and (6)  hold 
generally, for  in  the  situation  where freeze occurs every 
year, as discussed in [ 11, q= 0 and p = 1. 

3. ESTIMATION O F  FREEZE PROBABILITIES 

The  main  objective in developing  the freeze  dist,ribu- 
tion is to provide the means of ob'taining  probabilities. 

Thus,  proper est.imation of the  terms  in (5) and (6) will 
provide  estimates of the required  probab'ilities.  There 
are  two  ways  in  which we can est.imate  these terms:  Hav- 
ing e'stimated the p's, we may  estimat,e the Z and F A  func- 
tions  directly  from  the  data, or we may  first  estimate  the 
pa,rameters of the Z and PA funhons.  Before we  ca.n 
perform  these estimations,  however, we must define our 
climatological  variable,  freeze-date,  more closely. 

Clearly  calendar  date would be unsatisfactory as a 
variable.  However, we can easily  convert  calendar  date 
to  day  number  beginning  from some suit,able base date. 
This  will  facilitate  computations,  the  statistics  from 
which  may be readily convert,ed back to  calendar  date. 
Since  freeze  dat,es vary over the periods July 1 to De- 
cember 31 and  January l t.0 June 30, January l hams been 
chosen as the base date. I n  leap  years  the 366-day year 
was employed. 

Inasmuch  as  the base date will affect the mean of an  in- 
complete  freeze series, it might  appear  to be somewhat 
better to place the base date  at a point  halfway between 
the means of the  fall  and  spring  dates when freeze actually 
occurred.  However, this would result  in  little refinement 
and would cause great. inconvenience, for a  computation of 
the  halfway date would be required for each station. 
,In examination of a number of stations showed that  the 
halfway  date  usually occurs a few  days  after  January 1. 
I n  view  of the  larger  dispersion of the  spring dates, the 
ideal base date, on probability considerations,  should be 
displaced  backward in  time somewhat from  the  halfway 
date.  This,  together  with  the  fact  that  the choice of base 
date does not  greatly affect, the probabilities, seemed to 
wake  the  January 1 base t,he  most  satisfactory.  All  d,ata 
with  which we shall be, concerned have  therefore been 
coded to  January 1. Tables 2, 3, and 4 show the freeze 
dates coded in  this  manner  for  Anniston,  Birmingham, 
and  Auburn,  ala.  The  data  are  arranged  in order of 
increasing  date  and labeled with  order  number k .  The 
three  southern  stations  were chosen to emphasize the  in- 
conlpleteness aspect of the freeze  series  which is the  central 
problem of the  present analysis. 

Our first  estimates of FI and J will be empirical or non- 
parametric.  These  involve  first the estimation of I and FA. 
While  ordinarily  with  quite  long series these would be 
estimated by k / m  where k is the  order number and m is 
the  number of actual  freeze  dates, it has been found that 
for a continuous  dist.ribution the following  equation gives 
estimates  which are more  unbiased at  the smaller  and 
lnrger  probabilities : 

For spring t.llis becomes 
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TABLE 1,"statistics  for  various  freeze  thresholds for Annis ton ,  
Auburn,   and  Birmingham,  Ala.  

TABLE 2.-Estimated  probabilities of 16' freeze f o r  Anniston  after 
given  dates in spring  and before  given  dates in fall  

- ~ _ _ _  

Spring 
" 

i f  

"~ 

i I' 
"- 

0 .  941 
. 882 
,824 
,765  

. CA7 
,706 

,588 
. 529 
.4 i1  
,412 

,294 
,353 

. 235 

. 176 

.11x 
,059 

.r 
~ " 

11 
7 

I6 
25 
28 

41 
31 

41 
42 
44 
.SO 
50 
58 
59 
63 
70 

A X i I S T O S  

Sprina 

32 

,966 18.0 2/22 2/24 55.0 28 29 24 

1.000 14.0 3/30 3/30 89.4 29 29 
28 

. 736 ,431  ,552 18.8 1/22 2/9 39.8 16 29 16 
, 89i 19.2 2/11 2/16 47.0 26 29 20 

. 768 ,005 1.000 16.9 3/11 3/11 70. I 29 29 

I! 7 
1/11 
1/16 

1/31 
2/10 
2/10 
2/11 
2/13 
2'19 
2.119 
2127 
2/28 
31 4 
3/10 

1/25 
1/28 

0.519 
,487 
,455 
,422 
,390 
,357 
,325 
,292 
,260 
,227 
. 195 
, 162 
. 130 
,097 
. OR5 
,033 

0 .  529 
,517 
,495 
,432 
.404 

.261 

.37R 

.261 
,250 
,226 
.I61 
, 161 

,085 
,059 
,030 

. 092 

0.95Y 
,937 

. 782 
, 896 

,732 

.172 
,472 
,452 
.40Y 
.291 
,291 

.154 

. 166 

,107 
,054 

. en1 

Fal l  

I 
__ 

28 
28 
22 
14 
9 
" 

" 

0.795 

,716 
. s29 
.728 

.770 

" 

0. no5 
.7Y3 
,813 
,864 
. 789 

~ 

- . 986 
0. 310 

,888 
,279 

- . 710 
"" 

"~ 

"0.219 -. 478 
- ,381 -. l i 3  

,244 

310.3 
323.8 
333.4 

345.1 
338.1 

__ 

11/20 11/20 
11/29 12/6 

12/11 12/25 

11/6 l l / 6  

12/4  12/18 

12. 1 
12.2 
13.9 
10.7 
11. 7 

__ 

__ 
16.6 
18. 1 
21. 4 
19.6 
15. 1 

1.000 
1.000 
,786 
, 5 0 0  
,321 

" 

1.000 
1.000 
.931 

,414 
. 793 

2 
30 
30 
27 
23 
12 

80.3 
59. 5 
44.9 

32.0 
42.6 

32 30 
28 30 
24 29 
20 29 
16 29 

3/21  8/21 
3/1  3/1 

2/14 2/11 
2/12  2/3 
211 1/13 

0. 006 . 081 
,118 
,139 
,171 
,213 
,222 
,271 
,28R 

Fall 

32 
28 

29 317.9 11/14 11/16 9.6 0.987  30 

,200 11.3 12/2i 12/13 347.0 6 30 I6 
,333 11.3 12/23 12/6 340.1 IO 30 20 
,633 12.9 12/14 12/5 338.6 19  30 28 
,900 1 1 . 4  1212 l l ja9 333.1 27 30 

I3IRMlN(ilI.441 

S p r i n t  

0. 842 -0.203 
.725 
,841 

,910 

,807 --.l94 
,738 -. 266 

,468 

The I" and FA*' are  estimated by applying  equations (7) 
and (8) to the k's and m's of tables 2,3, and 4, giving  the I* 
and F" columns of spring  and  fall freeze of those  tables. 
From equations (5) and (6) it is seen that it is necessary 
to  multiply  the I" and F" by p ,  and p a ,  respectively, to 
obtain 11" and J", the  nonparametric  estimates of the 
mixed distribution.  From  table 1 we find for Anniston 
16", 11. =0.552 and p,=0.321. Multiplying these, respec- 
tively,  by the values of I* and F* from  table 2 gives the 
H" :tnd .J* columns of the  table. A similar calculation 
applies  to  tables 3 and 4. I t  is seen then  that H" gives  the 
probability  that  a  freeze occurs after  date z in spring 
and tlle probability  that R freeze  occurs  before date x 
in the  fall.  From  table 2 me see that  the  probability of a 
16"  freeze at  hnniston  after  February 11 is 0.260, after 
Rfarcll 10 it is only 0.033, or about 1 year in  30. The 
probability of a 24" freeze  occurring  before Xovember 19 
at   Suburn is 0.063 from  table 3, and of a 20" freeze after 
March 10 at  Birmingham is also 0.063 from  table 4. We 
do not recommend  tlle  nonpara.metric  estimates for use in 
obtaining  probabilities  since we have  a  t,heoretical  distribu- 
tion  as we shall see below. However,  the  empirical  proba- 
bilities  are necessary for  judging  the fit of the  theoretical 
distribution so they  are  plotted  in  distribution  function 
form  as broken  lines in figures 1, 2, m d  3. I f  one desires 
to use the  empirical  or  nonparametric  probabilities,  the 
recommended form of graph would be that shown in these 
figures. 

32 

,849 . 170 .46 i  19. I 1/16 2/3 34.4 14 30 16 
:i88 I -. 219 ,633 17. 1/28  2/13 44.4 19 30 20 

.097 
818 -. 245 ,933 15.7 2/16 2/20 50.5 28 30 24 

,770 1.000 17.3 3/4 3.14 62.7 30 30 28 
0.764 1 -0.493 1.000 16. B 3/19 3/19 77.6 30 30 

32 

,362 
,116 .825 ,933 14.3 12/3 l Z / l  334.7 28 30 28 

0. i97 -0.019 0.967 12.2 11/14 11/13 316.7 29 30 

16 30 8 346.5 12/13 :;?: I I:%; ,267 11.5 12/26 

24 
,400 11.0 12/22 12/8 342.1  12  30 20 

,854 ,700 12.5 12/13 1216 339. 8 21 30 

The  star  indicates a nonparametric  or  distribution-free 
estimate of a parameter  from a sample. 

To complete the  estimation of H and J, we must  esti- 
mate p a  and pa. Since  the freeze,  no-freeze  series forms 
a discrete distribution  the  estimates  are  found  from 

p=", A r n  

.n 

where fi is the  parametric  estimate of p ,  rn is the  number of 
years with freeze, and n is the  number of years  with  freeze 
or no-freeze. The  number of years  with no-freeze is, of 
course, n - m. 

The estimates p ,  and p ,  are  shown  in  the ?; column of 
table 1. These  were  obtained  by  applying  equation  (9) 
to  the m's and n's listed  there. The  statistics  for  all  thresh- 
olds are given in  table 1, although  only  Anniston 16", 
A4uburn 24", and  Birmingham 20" are discussed in  full. 
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TABLE 4.-Estimated  probabilities of 20" freeze at Birmingham  after 
given  dates in spring  or before  given  dates in fa l l  

Spring 

TABLE 3,"Estimated  probabilities of 24" freeze  at  Auburn  after  given 
dates in spring or before  given da'es in fa l l  

Spring 

k 1 Date 1 x I* i H* 
___ 

0.601 
,570 
,538 
.506 
.475 
.443 
.411 
,380 
,348 
,317 
,285 
,253 
,222 
,190 
,158 
,127 

,063 
.032 

,095 

X 2 

0.614 . Ea3 
.554 
: 520 
,501 
,489 
,361 
,347 
,319 
,289 
,232 
,232 
,232 
,232 
,125 
.097 . 089 
,048 
,031 

fl I P  

1 
2 

15 

24 
17 

28 
32 
32 
34 
39 
40 
42 
43 
44 
50 

54 
59 
59 

62 
63 
67 

73 
73 
79 

50 

6n 

70 

n. 912 
.91n 
.855 
.841 
,776 
. 731 
,676 
. 676 
,647 
,564 

,514 
,489 
. 480 
. 377 
,377 
,311 
,237 
,237 . 223 
,197 
.184 
,139 
,111 

.OR7 

.55n 

,095 

.n .u  

15 

24 
16 

28 
30 
31 
41 
42 
44 
46 
50 
50 

5n 
50 

59 
62 
63 

73 
70 

0.950 
.goo 
. 850 
.x00 
,750 
,700 
,650 
, 6 0 0  

,550 
.500 
.450 

,350 
,400 

,300 
,250 . zoo 
,150 
,100 
,050 

0.970 
,952 . 875 
,821 
,791 
,773 
,571 
,548 
,504 
,456 
,367 
,367 
.367 

.108 
,367 

,154 
,140 
,076 
.n49 

1/15 

1/24 

1/30 
1/31 

1/16 

1/28 

2/10 
2/11 

2/19 
2/19 
2/19 
2/19 
2/28 
3/3 

3/10 
3/4 

2/13 
2/15 

3/14 

n. 897 
,865 
,831 
,798 
,764 
,732 
,698 . 665 
,632 
,599 
,565 
,532 
,499 
,466 
,432 
.399 
,366 
.332 
.299 
.266 
. 2x4 
,199 
,167 . 1 3  

. O66 

. ion  

.a34 

0.964 0.980 
,929 ,977 
.893 .918 
.857 ,903 
,821 ,834 
,786 ,785 
,750 ,726 
,714 ,726 
,679 ,695 
,643 .me 
,607 .5Y1 
,571 .552 
,536 ,536 

,464  ,405 

,393 .831 
.357 .25R 
.321 ,255 
.286 ,239 
.250 ,312 
,214 .19S 
,179 .149 
,143 . I19 
. 107 . 102 

,500  IF 

,429 ,405 

. o n  ,093 

. n 3 ~  ,055 

n. 077 

.3n8 

,154 
,231 

.3x5 
,462 
,538 
.615 
,692 
.769 
,846 
.923 

0.021 
,109 
,215 
,302 
,433 
.504 
.606 

.764 
,736 

,764 . 877 . 894 

0.031 
.a62 

0.008 

.a92 
,044 

,123 
. 086 

.154 
,121 

,185 
,173 

.215 
,202 

.246 
,242 

,277 
,294 

,308 
,306 

,338 
,306 

,369 
,351 
,358 

11/15 
11/24 
11/29 
l Z /  2 

12/ 8 
12/11 

12/16 
12/21 
12/22 

lZ/ 6 

12/15 
12/16 

320 
328 
333 
337 
340 
342 
345 
349 
350 

355 
356 

350 

Fall 

c 1 D a t e  

n. n:u . 063 
,095 
,127 
.15X 
.1X) 
,222 
,253 
,285 
.317 
. x4x 
.411 . 443 
.475 
,506 . 538 
. 5 i O  
. 601 

.3no 

n. 049 
,074 
.084 
.134 
.147 
.163 
. 180 
.197 . 213 . 232 . 2i2 . 408 
.406  
.440 
.489 
.517 
,586 
,644 
,618 

I , 
Max ldj=0.121 

continuous  component of the  mixed  distribution for  nor- 
mality  which  is  fitted  to  the  date of freeze in  the series of 
actual  freeze occurrences. 

Probability  tables used in [l] due  to  Geary [6] are 
again employed to  test  for  normality. I n  these, a, the 
standardized mean  absolute  deviation  from  the  mean,  and 
dz, the  standardized  central  third moment, are measures 
of kurtosis  and skewness. These  statistics  are  listed  in 
table 1. Using  the  tables of [6] it was found  that none 
of the a's are significant at  the 0.10 probability level, and 
only  the dK (in  italics  in  table 1) for 28" freeze in  fall 
nt hnniston is significant at  the 0.02 level. The  four 
largest  values of -& are  individually  significant at  the 
0.10 level but  average  near zero. Two of these are nega- 
tive  and  two  are  positive ; however, fall  and  spring each 
have a negative  and  positive value. This  is  in disagree- 
ment with  what we would  expect  on the basis of the pos- 
sible boundedness  mentioned  above  which  would cause 
negative  skewness in  fall  and  positive skewness in  spring. 
We feel, therefore,  that it is  reasonable to assume that 
these larger  values  were  a  result of sampling  and  that, 
therefore,  the  normal  distribution  satisfactorily  fits  the 
continuous  component of the  mixed  distribution of freeze 
occurrence  and  date. 

12/11 

12/23 
12/26 
12/30 

12/14 
12jlfi 

Reed [5] and  later  Thom  and  Shaw [l] found  that  the 
normal distribution  provided  very good  fits to freeze- 
date series under  a  wide  range of conditions for  the 32" 
and other  thresholds  for complete series; i.e., for  p = l .  
The series, of course, tend  to be more  incomplete  the  far- 
ther south we  go. This  is  also accompanied  by  a shift  in 
the center of the  distribution  toward  the  colder  season; 
i.e., toward  winter  from  both  fall  and  spring.  This  shift, 
of the  distribution  center  naturally causes some concern 
since the  tails of the  distributions on the  winter  end could 
begin to show the effect of b'oundedness, and hence depar- 
ture from  normality  due  to  the decrease in  time  interval 
over which  late  fall  and  early  spring  freeze can range. 
This  was also the reason for  testing  our  theory on stations 
in a  southern  region  where  conditions  are most stringent. 
To verify  a  part of our  theory it  is necessary to  test  the 
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11/10 11/30 18/20 

FIGURE  1.-Probabilities of 16"  freeze at  Anniston, Ala., occurring 
after any given date  in  spring or before any  given  date  in  fall. 

BIRMINGHAM 
20' FREEZE 

"_ Non -porome/ric 
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FIGURE  2.-Probabilities of 20" freeze at Birmingham,  Ala.,  occur- 
ring  after  any  given  date  in  spring or before  any  given date  in  fall. 
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FALL 

I 
I 

1 

119 1/29 2/18 3/10 11/10 11/30 12/20 
DATE . 

FIGURE 3.-Probabilities of 24" freeze at  Auburn, Ala.,  occurring 
after any given  date in spring or before  any  given date in  fall. 

I ( % )  and P ( z )  were  fitted as  normal  distributions  to 
the  spring  and  fall  freeze-date series in  the  usual  manner 
by estimating the means and  standard deviations. I (x) 

gives the  probability of freeze  occurring after  date x in 
spring  and P ( x )  the  probability of an occurrence before 
date x in  fall,  both on the  condition  that freeze  has  actually 
occurred.  These  probabilities are  parametric estimates 
and  are  indicated by 1 and k' in  tables 2, 3, and 4. The 
normal  estimates and  the  nonparametric  estimates of the 
probabilities  may be compared by contrasting  the careted 
and  the  starred  distributions. 

Although  there is little question  about the adequacy of 
the  normal  distribution  in  fitting freeze-date, it is of in- 
terest to test the fit in  another  manner. For  this purpose 
we use the easily applied  Kolmogorov-Smirnov  test  for 
which Massey has provided  convenient tables. Massey 
[7] has also  examined the power of the  test  and has found 
it  superior  to  the x2 test  in  the cases aualyzed. The test 
is  carried  out  by  examining  the significance of 

max I c~ I =max I k/m-i(cz> I . (10) 

This  is  the  maximum absolute  difference between ks/m and 
the  normal  distribution  function.  The  maxima of 1 d I 
are shown at  the  foot of each distribution table.  Each 
value  may, of course, be tested  separately ; ho'wever, we 
may test  them  all at once by considering  the maximum of 
the  max I d I for  the longest  record  employed in fitting 
the  normal  distributions. This will be a more  stringent 
test than if we had used the  actual  length of record,  length 
m. Max  (max I d I ) we  see to be 0.133 and  the longest 
record is 19 years. For these arguments Massey's table 
gives 

Y(max I d I >0.133) >0.20 

Since 0.20 is a rather  large  probability,  the fit is  good; in 
fact,  all  the fits are as good or better  than  this.  This 
strengthens  our conclusion of normality reached above. 
The goodness of fit also extends to  the mixed distributions 
since there is little question of the fit of the p's. 

The mixed distributions of spring  and  fall freeze  are 
obtained  from equations (5) and (6) .  These are t'he Z?'S 

and j ' s  of tables 2, 3, and 4 and  are  obtained  from  the 1's 
and Z k .  by multiplying respectively,  by p ,  and pa. a* 
and J" are  the  nonparametric mixed  distributions,  and 
FI and j are  the  parametric mixed  distributions.  These 
are plotted in figures 1, 2, and 3. Here one may observe 
the rather good fits of the smooth  mixed  theoret,ical  dis- 
tribution  to  the broken line  empirical  distributions. 
Probabilities of freeze  before or after any  date  may be 
read  from  the smooth curves. 

4. MEAN FREEZE DATE 

Although  the mean freeze  date of the incomplete  freeze 
series is  more difficult to interpret, it is  perhaps of some 
formal  importance  to  consider it. Ordinarily  the mean 
value of even a mixed distribution is obtained  readily by 
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finding the expected  value of the  distribution.  Here, how- 
ever, the expected  value  depends  on what  value we assign 
to the  dates  on  which we assume the  probabilities qs and 
9. to be concentrated. We  made some provision for  this 
difficulty when we considered the freeze distributions 
above, but  this was not, as  important  there because the 
probabilities were not affected by t.he base date. If we 
make the  reasonable  assumption  that  the  maximum  grow- 
ing season is 365 days,  then it follows that when  no-freeze 
occurs in  spring,  but one occurs a t  date. x in  fall, t,he grow- 
ing season is x days long. If a  freeze occurs a t  % in  spring, 
but none occurs in  fall,  then  the  growing season is (365 
-x) days long. We  have  previously chosen our  day  num- 
ber code to  give a reasonable  interpretation  to  the mean 
dates; hence if we add our assumptions  about  growing 
season length, q. will be assumed  concentrated at  code 0 
and qa at  code (365 + 0) .  0 and (365 + 0) are  actually  the 
same hypothetical  day chosen so as to fit the  conditions 
imposed by our model of the  freeze-free season. We may 
now readily define the mean or expected values of the 
spring and  fall freeze date. 

For convenience we designate xs and xg as the  continu- 
ous parts of the  spring  and  fall  freeze  variables on the 
total interval  (1,365)  and $a and os as the  discrete part.s. 
o, only takes  the  value  (365+0)  and zS only the  value 0. 
We define the  pdf’s on data  in  spring  and  fall  to be f (x :s )  
and g (xA) , respectively. These are t>he derivatives of 
distribution functions expressed  generally  by  equation 
(1). We need also to define the mixed variable  date u 
for spring  and v for  fall, so as to  include  both  the  discrete 
and continuous parts. u and v then  hare  the  total  range 
(0, 365fO).  With 1-l~ese addit)ions, we may now express 
the mixed pdf of spring  freeze by 

h(u) = y . + p s  f(%) (11) 

and for fall freeze  by 

j ( @ ) = p a g ( x ~ ) + y a .  ( 12) 

The expected value  or mean is defined as  the sum and 
integral of the  products of the  variates by their  probabil- 
ities. Taking  into account the  fact  that qs and qa are 
discrete components of probability  concentrated at  0 and 
(365+0), we find the mean  value for  spring  to be 

E(u)=OXrl,+PsJs z s f ( d d z s  (13) 
and for fall 

E(v)=365&+paS A xAg(xA)dxA. (14) 

Here X is the  domain of spring  freeze  pdf  and A is the 
domain  of fall freeze  pdf.  Although  in  reality  the 
domain (X+A) is (1, 365) as mentioned  previously, we 

find it convenient to assume X and A to be of infinite 
extent.  This is plausible  because  the  probability densities 
become very  small  near x = l ,  365, and 364/2. With this 
assumption,  together  with  the  previous  one that f and g 
are  normal  pdf’s, it is clear that  the  integrals  in  (13)  and 
(14) are  mean  values  conditional on the occurrence of 
freeze. These  may be expres,ssd by E ( zs)  and E ( S A )  

meaning  the expected  values in  domains X and A. Equa- 
tions  (13)  and  (14)  then reduce to 

E(u)  = p s  E ( @ )  (15 ) 

and 

E(.) =365 q a + p a E ( a ) .  (16) 

Inasmuch as E (88) and E ( $ A )  are  the  means of normal 
distributions,  they  will be  best  estimated  by  the  arith- 
metic  means of spring  and  fall  freeze  dates is and ‘0.4. 
Substituting  these  estimates  together  with  the estimates 
of the p’s and q’s, we find the  estimated mixed  means for 
spring 

- 
U = p.&, (17) 

and  for  fall 

- 
~ = 3 6 5  Y a f p a Z A .  (18 ) 

These are  listed  in  table 1 for  the  stations  studied  and 
have been tabulated  for  a  large numb’er of Weather 
Bureau  stations. 

5. FREEZE-FREE SEASON DISTRIBUTION 

It will be  clear  from our definition of the  freeze-date 
variable  for  spring  and  fall  that we  may  express the 
freeze-free  season  by  the  variable y=v -u.  We  shall 
a.ssume, based  on  previous  work for complete series [ 11, 
that  spring  and  fall  freeze  dates  are  independently  dis- 
tributed.  This seems all  the  more  justified  for incom- 
plete  freeze  series since the  spring  and  fall  distributions 
are located farther  apart  in  time  than  those  for complete 
series. I n  order  to  find  the  distribution of freeze-free 
season, we must  obtain  the  distribution of y. This may 
be most  conveniently  done  by  moment-generating  func- 
tions or characteristic  functions  (cf).  The  former  are 
ordinarily  Laplace  transforms  and  the  latter  Fourier 
transforms. It makes little difference which we use here 
since our development  need  only be a synthesis of known 
results.  We  prefer  the cf because it has somewhat  more 
general  application. 

The cf  of a  pdf is defined as  the expected value of the 
Fourier  kernel.  (See [ 81, ch. 10.) 

p( t )  = E(e i l z )  =J - m  eilzf(z)dz. 
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Here t is an  arbitrary  variable  and j ( x )  is the  pdf. 
The  analytical  power of the cf arises from  the  fact  that 
p ( t )  is a  Fourier  transform,  and  therefore  the  inverse 
may  immediately  be  expressed  as 

f ( x ) = r  1 "  JPm p(t)e-"t"dt (20) 

which gives the  required  pdf.  The cf's are  obtained 
from  the pdf's of equation (11) and (12) (see 181, pp. 
57-58) by  multiplying  by  the  Fourier  kernel  and  taking 
expected values. This gives 

27r 

cp(t> = p a + %  cps(t) (21) 
and 

o ( t )  =pa+pa c p A ( t )  (22) 

For  convenience in convolution we may  take y=v  
+ ( -u)  in which case the  variable - ZG has  the cf 
cps( - t )  ( [SI, p. 185),  and we may  rewrite  (21) as 

[ ( t )  =ps+ps cps( - t ) .  (23) 

By  the  principle of convolution of distributions  the cf of 
the sum y=v + ( -ZG) will be the  product of (22)  and 
(23) ; i.e., 

( t )  =pspa+ pspa~p~ ( 6 )  + p a p s ~ ~  ( - 8) 

+ p s P a  ' p a ( t ) v s ( - t ) .  (24) 
Assuming normal  distributions  for  spring  and  fall  freeze- 
date, we consider the  last  term first. This  is  the  term 
involving  freeze  occurrence in  both  spring  and  fall. It is 
well known that  the cf  of a  normal  distribution  with 
mean p and  standard  deviation u is 

W(t)=exp [ - 1 / 2 t 2 U A 2 f i t p A ]  (25) 
using  our  variable for  fall freeze. Hence for  spring we 
have the  required cf 

t ( t  ) = exp [ - l / t 2  ug2 - i tpg ]  (26) 
Multiplying  (25)  by (26), we find the cf of the  mixture 
component of freeze-date  to be 

w[=exp [ - 1 / 2 t 2 ( ~ A 2 + ~ s 2 )  + i t ( p a - p s ) ]  (27) 
Since this  is of the  form  (25)  with mean p.4 -pS and 
variance ( u A ~ + u ~ ~ ) ,  it is  a  normal  distribution  with these 
parameters.  We  shall  express t8he pdf of this cf as w ( a )  
where z = ( zA - x#). 

AS to  the  other  terms on the  right of equation (24), 
the first term  is  the  product of the  probabilities  that  there 
is no freeze in  either  spring or fall  and  is consequently 
the  probability that  the  freeze-free season is 365 days.  The 
pdf's of the second and  third  terms  may be interpreted 
as follows: The second term is the  mixture  component 
with no-freeze in  spring  but one in  fall ; hence the  variable 
Z =  ( OA - 0) = zA. Since  the cf is for  the  pdf g ,  this  remains 

g ( zA) .  The  third  term of (24)  is  the  mixture component 
with  freeze in  spring  but none in  fall.  For  this  the freeze- 
free season variable  is z= 365-xs and  the  pdf becomes 
f (365 - z s )  which  has  the cf cps ( - 6 )  with a location  shift 
to account for  our chosen  freeze-date scale. 

TVith these interpretations  made, we may now write the 
pdf of freeze-free  period  as 

~ ( y )  = q s q a + q s p a g ( z ~ )  fpapsf(365-z~) + ~ s p a w ( g ) -  ( 28 )  
I f  we integrate  equation  (28)  term by term, remembering 
that  the first  term is a  constant, we find the  distribution 
function of freeze-free  period  to be 

Q ( y ) = q s p 2 ' ~  ( % A )  + p a ~ s P s  (365 - Z S )  + p s p a w  ( 2 )  f pspm 
(29) 

As we have seen previously,  the  distribution function 
gives the  probability of an  occurrence of freeze  before date 
z; hence Q (y)  gives the  probability of a  growing season 
less than y. This may be obtained  from  equation  (29) by 
substituting  the  estimates  for  the p's, p's, means ( G ) ,  and 
standard  deviations (8) from  table 1. 

As an  example, we obtain Q (y) for  the 16"-16O  freeze- 
free  period  at  Anniston.  This  cannot be expressed as a 
single  function ; it must be compiled by adding  the com- 
ponent  probabilities of equation  (29).  From  table 1 we 
find the mean of the 16" fall-freeze  variate  to be Z~=345.1 
and  the  standard  deviation SA= 11.7. According  to our 
definition,  the  mean for  the  spring  freeze  variate is 
365-Zg. From  table 1, 16" spring freeze, we find 
iZ:s=3O.8 ; hence, 365-&= 325.2. Since  the  standard de- 
viation  is  not affected by either  the  algebraic  sign of x# 
or its  subtraction  from 365, $8 is also found  from  table 1 
and  is 18.8. From equation  (27) we  see that  the sample 
mean of the  last  component  is B=ZA-Zg=305.3, and the 
standard  deviation is 

d m = d ( 1 1 . 7 ) 2 +  (18.S)2=22.1. 

From  table 1 we also find ps=0.552  and  pa=0.321. The 
p's are one minus  the p's ; hence  qs=0.448 and p,=0.679. 
These  readily  yield  the coefficients in  (29) : psp,=0.144, 
g,ps=0.37;5, psp,=0.177. The  probability of a 16"-16' 
freeze-free season of 365 days  is qsp,=0.304. Note that the 
coefficients  of the  probability  function (28) add  to unity 
as they  should. 

The  probabilities  for each  component of the  mixture for 
a convenient set of freeze-free season dur a  t' 1011s were com- 
puted  using  the above data  and  are  listed  in  table 5.  The 
theoretical  distribution 8 is  listed in the  eighth column 
and  is  the sum along rows of the  three components.  The 
empirical  distribution Q* computed  from  the  original 
freeze-free season series by equations ( 7 )  and  (29) is 
shown in  the  last column for comparison  purposes. 

The  theoretical  and  empirical  freeze-free  distributions 
are shown in figure 4, the  former by the smooth curve 
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TARLE 5.-Distributions (Q  and Q*) of freeze-free  season  durations for 16' threshold for Anniston,  Ala.,  and  probabilities jor  each  component 
of the mixture 
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and the  latter by the broken  line. The 365-day component 
of probability  is  the  vertical  line  at  right  end of the 
theoretical curve. The maximum  absolute difference be- 
tween the  empirical  and  theoretical curves,  adjusted  to 
unity to  make  the  continuous  part a  distrib'ution  function, 
is 0.089. For sample size 20, the number  years  with 
freeze, Massey's [7] table gives  a  much larger  value 0.231 
at the 0.20 probability  limit. The fit of the theoretical 
distrib'ution to  the  actual  data  is t.herefore  very good. 
Prohbilities  that  the 16"-16" freeze-free season is less 
than any number of days  read on the abscissa may be 
read from  the  ordinate of the figure. 
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6. MEAN FREEZE-FREE SEASON 

The meall or expected  value of the  freeze-free season 
which is at least of some formal  interest  can be  readily 
found by tEle usual  methods  from  equation (28). Multi- 
plying each term  by its variate  and  integrating, recalling 
that  the first  term is  associated  only with 365, and sub- 
stituting  rough values, we find 

v=365 p e ~ a + p 8 p , ~ ~ + ~ a p s ( 3 6 5 - ~ ~ )  +pspaz- (30) 

It was pointed  out to me by Dan  Harton  that $ can 
obviously be obtained  much  more  easily from  the difference 
of equations (15) and  (16).  This gives 

ij= 365 pa+pa Z A A - P ~  ZB. (31) 

By a  considerable  amount of algebraic  manipulation, 
equation  (30)  may be reduced to equation (31).  This is 
of interest  since it shows that convolution  has produced 
a distribution (28) consistent  with  the basic  assumptions 
as, of course, it must if it is  correctly defined. 

Using  either  formula  together  with  the values found 
above, we find jj, the mean 16"-16" freeze-free season at 
Anniston, to be 336.6 days. The means of spring  and  fall 
freeze and freeze-free  period  are  available  from  Weather 
Bureau State climatologists for a large  number of stations 
in  the TJnited States. 
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